Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215583

RESUMEN

Scaffolds are advanced devices employed in tissue engineering, as they are intended to mimic the characteristics of extracellular matrices. In this respect, conjugated materials are gaining relevance in the manufacturing of the foams used for therapeutic scaffolds, since they can provide certain properties that are missing in the other polymers used to form the scaffolds. This work has, therefore, focused on the development of functional scaffolds formed by conjugated-non-conjugated polymers such as polyvinyl acetate and polypyrrole, impregnated with gallic acid as the model drug and produced by means of a supercritical CO2 foaming/impregnation process. The effects from a series of parameters such as pressure, temperature, depressurization rate, and contact time of the scaffold production process have been determined. The impregnated foams have been characterized according to their morphology, including their porosity and expansion factor, their drug loading and delivering capabilities, and their mechanical and electrical properties. The characterization of the experiments was carried out using scanning electron microscopy, liquid displacement, in vitro release, electrochemical impedance spectroscopy, and compression techniques. The results from our tests have revealed a considerable influence of all the input variables studied, as well as relevant interactions between them. Values close to 35% porosity were obtained, with a drug release of up to 10 h with a fast initial release. The best operating conditions were 353 K, 30 MPa, 0.5 MPa/min depressurization rate, and 1 h contact time. By means of the supercritical foaming/impregnation technique, scaffolds with potential in tissue engineering due to their studied properties were obtained.

2.
Sci Rep ; 8(1): 15203, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315279

RESUMEN

Obesity-related comorbidities are, in large part, originated from the dysfunction of adipose tissue. Most of them revert after the normalization of body mass. Adipose tissue is essentially occupied by adipocytes. However, different populations of immunological cells and adipocyte precursor cells (AdPCs) are the main cellular components of tissue. During obesity, body fat depots acquire a low-level chronic inflammation and adipocytes increase in number and volume. Conversely, weight loss improves the inflammatory phenotype of adipose tissue immune cells and reduces the volume of adipocytes. Nevertheless, very little is known about the evolution of the human AdPCs reservoir. We have developed a flow cytometry-based methodology to simultaneously quantify the main cell populations of adipose tissue. Starting from this technical approach, we have studied human adipose tissue samples (visceral and subcutaneous) obtained at two different physiological situations: at morbid obesity and after bariatric surgery-induced weight loss. We report a considerable increase of the AdPCs reservoir after losing weight and several changes in the immune cells populations of adipose tissue (mast cells increase, neutrophils decrease and macrophages switch phenotype). No changes were observed for T-lymphocytes, which are discussed in the context of recent findings.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Cirugía Bariátrica , Citometría de Flujo/métodos , Células Madre/citología , Pérdida de Peso/fisiología , Adulto , Recuento de Células , Tamaño de la Célula , Estudios de Cohortes , Células Endoteliales/metabolismo , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...